
Open Data Mashup Day: OULAD example
Jakub Kuzilek, Martin Hlosta and Zdenek Zdrahal

10-11-2015

Introduction

This document demonstrates how to use the Open University Learning Analytics dataset (OULAD). The
following sections will guide you through the environment setup, data downloading and data manipulation.
All codes presented in the document can be downloaded from OULAD webpage. All examples are deployed
using R version 3.2.2 (“Fire Safety”) and RStudio version 0.99.486. We will be using only a subset of the
whole dataset developed for the purpose of the Open Data Mashup Day in London.

Environment setup

First of all you need to download and install R version 3.2.2 and RStudio. After installation of the
required software, we need to install package data.table, which provides enhanced fuctionality for the
data.frame data type in R, by executing the following command:

install.packages("data.table")

After installing, we need to load the library data.table into the environment. This is done by executing this
command:

library(data.table)

Example task

Compare an average result of registered female students, who engaged with Virtual Learning Environment in
28th day of presentation, from two different presentations in 1st and 2nd Tutor Marked Assigment (TMA)
using combined weighted score.

Data preparation

First of all we need to download the data by executing:

download.file("http://kmi-web29.open.ac.uk:8080/resources/documents/mashupData.RData",
destfile = "./mashupData.RData",
mode = "wb",quiet = TRUE)

Then we will load the data into the R environment using:

load("mashupData.RData")

You can observe the loaded data in the top right corner of RStudio:

https://analyse.kmi.open.ac.uk/open_dataset
https://elevator.jisc.ac.uk/e/open-data-mashup-challenge/about
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

Solution

Now, we have the environment set up, the data ready for use and we can start solving the Example Task.

Selecting students

First we need to select female students only. The demographic information about students is presented
in table studentInfo, thus we will manipulate this table to select only female students using following
command:

femaleStudents <- studentInfo[gender == "F"]

The result of selection will be stored in the new variable femaleStudents containing demographics of all
female students in both presentations.

Selecting registered students

We are interested only in students, who were registered in 28th day of presentation, thus we need to filter out
students who unregistered from the module before and during this day. Registration data are stored in table
studentRegistration. We will select only registered students by executing:

registeredStudents <- studentRegistration[
is.na(date_unregistration) | date_unregistration > 28
]

Note that students, who finished the course have value NA in the date_unregistration column, thus we
need to select students with NA (finished the module) or unregistered after 28th day of presentation.

Selecting VLE active students

We are also interested in students, who were active in the VLE at 28th day of presentation. Thus we need
the information contained in table studentVle. We need to select log entries with date column equal to 28.
Because we need only the identification of the student, and the presentation he/she studied we will extract
only three columns as follows:

activeStudents <- studentVle[date == 28][,
.(id_student,

code_module,
code_presentation)

]

setkey(activeStudents, id_student, code_module, code_presentation)

activeStudents <- unique(activeStudents)

By setting the table primary key (columns, which identifies the record) using setkey command followed by
the unique command, we will select only unique identification rows, which is exactly what we need.

Combining student scores from first and second TMA

We have prepared the subsets of data answering parts of the task. Now we have to select the first and second
TMA from each presentation, get their weights and use them to calculate the combined score for each student.
Assessment weights are stored in table assessments. First, we will extract the id_assessment values of all
four assessments required to solve our task:

assessments_codes <- assessments[assessment_type == "TMA"]
assessments_codes <- assessments_codes[order(date)][1:4, id_assessment]

There exist more types of assessments, We are interested only in TMAs, so first we need to filter only them
from the rest. Then the table is reordered according to the assessment cutoff date (note that the first and
second assessments have cutoff dates lower than third one in all presentations) and then we extract first four
identifiers from the reordered table, which represents the identifiers of the first and second TMA in both
presentations. Next we will use assessments_codes to extract all neccessary information from assessments
table executing the following command:

selectedAssessments <- assessments[id_assessment %in% assessments_codes]

Now we have got the required information about the assessments and we need to combine this information
with the student results in studentAssessment table. This can be done by setting primary keys for
selectedAssessments and studentAssessments and then joining them together leaving only the first and
second TMA results:

setkey(selectedAssessments, id_assessment)
setkey(studentAssessment, id_assessment)

studentAssessmentWithWeights <- studentAssessment[selectedAssessments]

Finally, we need to combine the TMA results with the corresponding weights by executing:

studentAssessmentWithWeights[, weightedScore := score*weight/100]

And then for each student we calculate the sum of weighted score of all the assessments together by executing:

studentResults <- studentAssessmentWithWeights[,
.(score = sum(weightedScore)),
by=.(id_student,

code_module,
code_presentation)

]

Putting everything together

Finally, we have ready everything we need. Let start combining partial answers together. First we will
combine femaleStudents with registeredStudents to get those female students, who are still progressing
in module at 28th day of presentation, by executing:

setkey(femaleStudents, id_student, code_module, code_presentation)
setkey(registeredStudents, id_student, code_module, code_presentation)

registeredFemaleStudents <- femaleStudents[registeredStudents, nomatch=0]

Next we combine the new table with table activeStudents to select those students, who were active at 28th
day of presentation, executing this command:

activeRegisteredFemaleStudents <-
registeredFemaleStudents[activeStudents, nomatch=0]

The last step is adding score to each selected students by executing the following command:

activeRegisteredFemaleStudentsWithScore <-
activeRegisteredFemaleStudents[studentResults, nomatch = 0]

Comparison of student results from different presentations

Now we have all the information we needed and we can solve the task by executing the following command:

print(activeRegisteredFemaleStudentsWithScore[,
.(mean.score = mean(score)),
by=code_presentation])

And the result is:

code_presentation mean.score
1: 2013J 16.155
2: 2014J 7.500

Licensing and contact information

This example is released under CC-BY 4.0 license. For further information please visit OU Analyse team web
or contact us directly using one of the following e-mails:

• Jakub Kuzilek (jakub.kuzilek@gmail.com)
• Zdenek Zdrahal (zdenek.zdrahal@open.ac.uk)
• Martin Hlosta (martin.hlosta@open.ac.uk)

https://creativecommons.org/licenses/by/4.0/
https://analyse.kmi.open.ac.uk/
mailto:jakub.kuzilek@gmail.com
mailto:zdenek.zdrahal@open.ac.uk
mailto:martin.hlosta@open.ac.uk

	Introduction
	Environment setup
	Example task
	Data preparation
	Solution
	Selecting students
	Selecting registered students
	Selecting VLE active students
	Combining student scores from first and second TMA
	Putting everything together
	Comparison of student results from different presentations

	Licensing and contact information

